Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 746
Filter
1.
Article in Chinese | MEDLINE | ID: mdl-38604685

ABSTRACT

OBJECTIVE: To investigate the microbiota composition and diversity between autogenous and anautogenous Culex pipiens pallens, so as to provide insights into unraveling the pathogenesis of autogeny in Cx. pipiens pallens. METHODS: Autogenous and anautogenous adult Cx. pipiens pallens samples were collected at 25 ℃, and the hypervariable regions of the microbial 16S ribosomal RNA (16S rRNA) gene was sequenced on the Illumina NovaSeq 6000 sequencing platform. The microbiota abundance and diversity were evaluated using the alpha diversity index, and the difference in the microbiota structure was examined using the beta diversity index. The microbiota with significant differences in the abundance between autogenous and anautogenous adult Cx. pipiens pallens samples was identified using the linear discriminant analysis effect size (LEfSe). RESULTS: The microbiota in autogenous and anautogenous Cx. pipiens pallens samples belonged to 18 phyla, 28 classes, 70 orders, 113 families, and 170 genera, and the dominant phyla included Proteobacteria, Bacteroidetes, and so on. At the genus level, Wolbachia was a common dominant genus, and the relative abundance was (77.6 ± 11.3)% in autogenous Cx. pipiens pallens samples and (47.5 ± 8.5)% in anautogenous mosquito samples, while Faecalibaculum (0.4% ± 0.1%), Dubosiella (0.5% ± 0.0%) and Massilia (0.5% ± 0.1%) were specific species in autogenous Cx. pipiens pallens samples. Alpha diversity analysis showed that higher Chao1 index and ACE index in autogenous Cx. pipiens pallens samples than in anautogenous samples (both P values > 0.05), and lower Shannon index (P > 0.05) and Simpson index (P < 0.05) in autogenous Cx. pipiens pallens samples than in anautogenous samples. LEfSe analysis showed a total of 48 significantly different taxa between autogenous and anautogenous Cx. pipiens pallens samples (all P values < 0.05). CONCLUSIONS: There is a significant difference in the microbiota diversity between autogenous and anautogenous Cx. pipiens pallens.


Subject(s)
Culex , Culicidae , Microbiota , Humans , Animals , RNA, Ribosomal, 16S/genetics , Culex/genetics , Culicidae/genetics , Microbiota/genetics
2.
Sci Rep ; 14(1): 7432, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548880

ABSTRACT

Mosquitoes (Culicidae) represent the main vector insects globally, and they also inhabit many of the terrestrial and aquatic habitats of the world. DNA barcoding and metabarcoding are now widely used in both research and routine practices involving mosquitoes. However, these methodologies rely on information available in databases consisting of barcode sequences representing taxonomically identified voucher specimens. In this study, we assess the availability of public data for mosquitoes in the main online databases, focusing specifically on the two most widely used DNA barcoding markers in Culicidae: COI and ITS2. In addition, we test hypotheses on possible factors affecting species coverage (i.e., the percentage of species covered in the online databases) for COI in different countries and the occurrence of the DNA barcode gap for COI. Our findings showed differences in the data publicly available in the repositories, with a taxonomic or species coverage of 28.4-30.11% for COI in BOLD + GenBank, and 12.32% for ITS2 in GenBank. Afrotropical, Australian and Oriental biogeographic regions had the lowest coverages, while Nearctic, Palearctic and Oceanian had the highest. The Neotropical region had an intermediate coverage. In general, countries with a higher diversity of mosquitoes and higher numbers of medically important species had lower coverage. Moreover, countries with a higher number of endemic species tended to have a higher coverage. Although our DNA barcode gap analyses suggested that the species boundaries need to be revised in half of the mosquito species available in the databases, additional data must be gathered to confirm these results and to allow explaining the occurrence of the DNA barcode gap. We hope this study can help guide regional species inventories of mosquitoes and the completion of a publicly available reference library of DNA barcodes for all mosquito species.


Subject(s)
Culicidae , Animals , Culicidae/genetics , DNA Barcoding, Taxonomic/methods , Mosquito Vectors , Australia , DNA/genetics , Biodiversity
3.
Virulence ; 15(1): 2329447, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38548679

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that regulate the post-transcriptional expression of target genes. Virus-encoded miRNAs play an important role in the replication of viruses, modulate gene expression in both the virus and host, and affect their persistence and immune evasion in hosts. This renders viral miRNAs as potential targets for therapeutic applications, especially against pathogenic viruses that infect humans and animals. Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic RNA virus that causes severe disease in both humans and livestock. High mortality among newborn lambs and abortion storms are key characteristics of an RVF outbreak. To date, limited information is available on RVFV-derived miRNAs. In this study, computational methods were used to analyse the RVFV genome for putative pre-miRNA genes, which were then analysed for the presence of mature miRNAs. We detected 19 RVFV-encoded miRNAs and identified their potential mRNAs targets in sheep (Ovis aries), the most susceptible host. The identification of significantly enriched O. aries genes in association with RVFV miRNAs will help elucidate the molecular mechanisms underlying RVFV pathogenesis and potentially uncover novel drug targets for RVFV.


Subject(s)
Culicidae , MicroRNAs , Rift Valley Fever , Rift Valley fever virus , Humans , Pregnancy , Female , Animals , Sheep/genetics , Rift Valley fever virus/genetics , Rift Valley Fever/genetics , Rift Valley Fever/epidemiology , Culicidae/genetics , Disease Outbreaks , MicroRNAs/genetics
4.
Mol Ecol ; 33(7): e17314, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38441172

ABSTRACT

Understanding microbial roles in ecosystem function requires integrating microscopic processes into food webs. The carnivorous pitcher plant, Sarracenia purpurea, offers a tractable study system where diverse food webs of macroinvertebrates and microbes facilitate digestion of captured insect prey, releasing nutrients supporting the food web and host plant. However, how interactions between these macroinvertebrate and microbial communities contribute to ecosystem functions remains unclear. We examined the role of the pitcher plant mosquito, Wyeomyia smithii, in top-down control of the composition and function of pitcher plant microbial communities. Mosquito larval abundance was enriched or depleted across a natural population of S. purpurea pitchers over a 74-day field experiment. Bacterial community composition and microbial community function were characterized by 16S rRNA amplicon sequencing and profiling of carbon substrate use, bulk metabolic rate, hydrolytic enzyme activity, and macronutrient pools. Bacterial communities changed from pitcher opening to maturation, but larvae exerted minor effects on high-level taxonomic composition. Higher larval abundance was associated with lower diversity communities with distinct functions and elevated nitrogen availability. Treatment-independent clustering also supported roles for larvae in curating pitcher microbial communities through shifts in community diversity and function. These results demonstrate top-down control of microbial functions in an aquatic microecosystem.


Subject(s)
Culicidae , Microbiota , Animals , Culicidae/genetics , RNA, Ribosomal, 16S/genetics , Food Chain , Insecta/genetics , Larva , Bacteria/genetics , Microbiota/genetics
5.
Acta Trop ; 253: 107171, 2024 May.
Article in English | MEDLINE | ID: mdl-38447704

ABSTRACT

Armigeres subalbatus (Diptera: Culicidae) is a mosquito species of significant medical and veterinary importance. It is widely distributed across Southeast and East Asia and is commonly found throughout Thailand. This study assessed the genetic diversity and population structure of Ar. subalbatus in Thailand using the cytochrome c oxidase subunit I (COI) gene sequences. Additionally, wing shape variations among these populations were examined using geometric morphometrics (GM). Our results demonstrated that the overall haplotype diversity (Hd) was 0.634, and the nucleotide diversity (π) was 0.0019. Significant negative values in neutrality tests (p < 0.05) indicate that the Ar. subalbatus populations in Thailand are undergoing a phase of expansion following a bottleneck event. The mismatch distribution test suggests that the populations may have started expanding approximately 16,678 years ago. Pairwise genetic differentiation among the 12 populations based on Fst revealed significant differences in 32 pairs (p < 0.05), with the degree of differentiation ranging from 0.000 to 0.419. The GM analysis of wing shape also indicated significant differences in nearly all pairs (p < 0.05), except for between populations from Nakhon Pathom and Samut Songkhram, and between those from Chiang Mai and Mae Hong Son, suggesting no significant difference due to their similar environmental settings. These findings enhance our understanding of the population structure and phenotypic adaptations of mosquito vectors, providing vital insights for the formulation of more efficacious vector control strategies.


Subject(s)
Culicidae , Animals , Culicidae/genetics , Thailand , Mosquito Vectors/genetics , Genetics, Population , Asia, Eastern
6.
J Insect Sci ; 24(2)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38501855

ABSTRACT

For many mosquito species, the females must obtain vertebrate blood to complete a gonotrophic cycle. These blood meals are frequently supplemented by feeding on sugary plant nectar, which sustains energy reserves needed for flight, mating, and overall fitness. Our understanding of mosquito nectar foraging behaviors is mostly limited to laboratory experiments and direct field observations, with little research into natural mosquito-host plant relationships done in North America. In this study, we collected nectar-fed female mosquitoes over a 2-year period in Manitoba, Canada, and amplified a fragment of the chloroplast rbcL gene to identify the plant species fed upon. We found that mosquitoes foraged from diverse plant families (e.g., grasses, trees, ornamentals, and legumes), but preferred certain species, most notably soybean and Kentucky blue grass. Moreover, there appeared to be some associations between plant feeding preferences and mosquito species, date of collection, landscape, and geographical region. Overall, this study implemented DNA barcoding to identify nectar sources forage by mosquitoes in the Canadian Prairies.


Subject(s)
Aedes , Culex , Culicidae , Female , Animals , Culicidae/genetics , Plant Nectar , Feeding Behavior , Canada , Dietary Supplements , Mosquito Vectors
7.
Microb Genom ; 10(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38240642

ABSTRACT

The risk to human health from mosquito-borne viruses such as dengue, chikungunya and yellow fever is increasing due to increased human expansion, deforestation and climate change. To anticipate and predict the spread and transmission of mosquito-borne viruses, a better understanding of the transmission cycle in mosquito populations is needed. We present a pathogen-agnostic combined sequencing protocol for identifying vectors, viral pathogens and their hosts or reservoirs using portable Oxford Nanopore sequencing. Using mosquitoes collected in São Paulo, Brazil, we extracted RNA for virus identification and DNA for blood meal and mosquito identification. Mosquitoes and blood meals were identified by comparing cytochrome c oxidase I (COI) sequences against a curated Barcode of Life Data System (BOLD). Viruses were identified using the SMART-9N protocol, which allows amplified DNA to be prepared with native barcoding for nanopore sequencing. Kraken 2 was employed to detect viral pathogens and Minimap2 and BOLD identified the contents of the blood meal. Due to the high similarity of some species, mosquito identification was conducted using blast after generation of consensus COI sequences using RACON polishing. This protocol can simultaneously uncover viral diversity, mosquito species and mosquito feeding habits. It also has the potential to increase understanding of mosquito genetic diversity and transmission dynamics of zoonotic mosquito-borne viruses.


Subject(s)
Arboviruses , Culicidae , Nanopore Sequencing , Animals , Humans , Culicidae/genetics , Arboviruses/genetics , Mosquito Vectors , Brazil , DNA
8.
Vet Parasitol ; 325: 110092, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070383

ABSTRACT

Armigeres subalbatus, a mosquito species widely found in Thailand and other Asian countries, serves as a vector for filarial parasites, affecting both humans and animals. However, the surveillance of this vector is complicated because of its morphological similarity to two other species, Armigeres dohami and Armigeres kesseli. To differentiate these morphologically similar species, our study employed both wing geometric morphometrics (GM) and DNA barcoding, offering a comprehensive approach to accurately identify these closely related Armigeres species in Thailand. Our GM analyses based on shape demonstrated significant accuracy in differentiating Armigeres species. Specifically, the outline-based GM method focusing on the 3rd posterior cell exhibited an accuracy rate of 82.61%, closely followed by the landmark-based GM method with 81.54%. Both these GM techniques effectively distinguished Ar. subalbatus from Ar. dohami and Ar. kesseli. Regarding DNA barcoding, our investigation of pairwise intra- and interspecific divergences revealed a "barcoding gap". Furthermore, the results of species confirmation using both species delimitation methods including the automatic barcode gap discovery method (ABGD) and the Multi-rate Poisson tree process (mPTP) were consistent with those of morphological identification, sequence comparisons with the GenBank and Barcode of Life Data System (BOLD) databases, and the neighbor-joining tree construction. These consistent results emphasize the efficacy of DNA barcoding in the precise identification of Armigeres species.


Subject(s)
Culicidae , Humans , Animals , Culicidae/genetics , Culicidae/parasitology , DNA Barcoding, Taxonomic/methods , DNA Barcoding, Taxonomic/veterinary , Thailand , Mosquito Vectors
9.
Trends Parasitol ; 40(1): 10-20, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38065789

ABSTRACT

Mosquitoes are best known for transmitting human and animal viruses. However, they also harbour mosquito-specific viruses (MSVs) as part of their microbiota. These are a group of viruses whose diversity and prevalence overshadow their medically relevant counterparts. Although metagenomics sequencing has remarkably accelerated the discovery of these viruses, what we know about them is often limited to sequence information, leaving much of their fundamental biology to be explored. Understanding the biology and ecology of MSVs can enlighten our knowledge of virus-virus interactions and lead to new innovations in the management of mosquito-borne viral diseases. We retrace the history of their discovery and discuss research milestones that would line the path from mosquito virome knowledge to vector management strategies.


Subject(s)
Culicidae , Viruses , Animals , Humans , Culicidae/genetics , Virome , Genome, Viral , Mosquito Vectors , Viruses/genetics
10.
PLoS One ; 18(11): e0293946, 2023.
Article in English | MEDLINE | ID: mdl-38011160

ABSTRACT

Studies based on the bacterial diversity present in Mansonia spp. are limited; therefore, the aim of this study was to investigate the bacterial diversity in females and larvae of Mansonia spp., describe the differences between the groups identified, and compare the microbiota of larvae from different collection sites. Sequences of the 16S rRNA region from the larvae and females of Mansonia spp. were analyzed. Diversity analyzes were performed to verify the possible bacterial differences between the groups and the collection sites. The results showed Pseudomonas was the most abundant genus in both females and larvae, followed by Wolbachia in females and Rikenellaceae and Desulfovibrio in larvae. Desulfovibrio and Sulfurospirillum, sulfate- and sulfur-reducing bacteria, respectively, were abundant on the larvae. Aminomonas, an amino acid-degrading bacterium, was found only in larvae, whereas Rickettsia was identified in females. Bacterial diversity was observed between females and larvae of Mansonia and between larvae from different collection sites. In addition, the results suggest that the environment influenced bacterial diversity.


Subject(s)
Culicidae , Female , Animals , Larva/microbiology , Brazil , RNA, Ribosomal, 16S/genetics , Culicidae/genetics , Bacteria/genetics
11.
J Biol Dyn ; 17(1): 2285749, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38015718

ABSTRACT

We formulate simple differential equation models to study the impact of releases of transgenic sterile mosquitoes carrying a dominant lethal on mosquito control based on the modified sterile insects technique. The early acting bisex, late acting bisex, early acting female-killing, and late acting female-killing lethality strategies are all considered. We determine release thresholds of the transgenic sterile mosquitoes, respectively, for these models by investigating the existence of positive equilibria and their stability. We compare the model dynamics, in particular, the thresholds of the models numerically. The late acting lethality strategies are generally more effective than their corresponding early acting lethality strategies, but the comparison between the late acting bisex and early acting female-killing lethality strategies depends on different parameter settings.


Subject(s)
Culicidae , Infertility , Animals , Female , Models, Biological , Animals, Genetically Modified , Mosquito Control/methods , Insecta , Culicidae/genetics
12.
J Clin Microbiol ; 61(12): e0015223, 2023 12 19.
Article in English | MEDLINE | ID: mdl-37982611

ABSTRACT

Eastern equine encephalitis virus (EEEV), Madariaga virus (MADV), and Venezuelan equine encephalitis virus complex (VEEV) are New World alphaviruses transmitted by mosquitoes. They cause febrile and sometimes severe neurological diseases in human and equine hosts. Detecting them during the acute phase is hindered by non-specific symptoms and limited diagnostic tools. We designed and clinically assessed real-time reverse transcription polymerase chain reaction assays (rRT-PCRs) for VEEV complex, MADV, and EEEV using whole-genome sequences. Validation involved 15 retrospective serum samples from 2015 to 2017 outbreaks, 150 mosquito pools from 2015, and 118 prospective samples from 2021 to 2022 surveillance in Panama. The rRT-PCRs detected VEEV complex RNA in 10 samples (66.7%) from outbreaks, with one having both VEEV complex and MADV RNAs. VEEV complex RNA was found in five suspected dengue cases from disease surveillance. The rRT-PCR assays identified VEEV complex RNA in three Culex (Melanoconion) vomerifer pools, leading to VEEV isolates in two. Phylogenetic analysis revealed the VEEV ID subtype in positive samples. Notably, 11.9% of dengue-like disease patients showed VEEV infections. Together, our rRT-PCR validation in human and mosquito samples suggests that this method can be incorporated into mosquito and human encephalitic alphavirus surveillance programs in endemic regions.


Subject(s)
Alphavirus , Culicidae , Dengue , Encephalitis Virus, Eastern Equine , Encephalomyelitis, Eastern Equine , Encephalomyelitis, Venezuelan Equine , Humans , Animals , Horses/genetics , Encephalitis Virus, Eastern Equine/genetics , Encephalomyelitis, Venezuelan Equine/diagnosis , Encephalomyelitis, Venezuelan Equine/epidemiology , Culicidae/genetics , Reverse Transcriptase Polymerase Chain Reaction , Phylogeny , Prospective Studies , Public Health Surveillance , Retrospective Studies , Alphavirus/genetics , RNA
13.
Nat Commun ; 14(1): 6252, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803007

ABSTRACT

Mosquitoes have profoundly affected human history and continue to threaten human health through the transmission of a diverse array of pathogens. The phylogeny of mosquitoes has remained poorly characterized due to difficulty in taxonomic sampling and limited availability of genomic data beyond the most important vector species. Here, we used phylogenomic analysis of 709 single copy ortholog groups from 256 mosquito species to produce a strongly supported phylogeny that resolves the position of the major disease vector species and the major mosquito lineages. Our analyses support an origin of mosquitoes in the early Triassic (217 MYA [highest posterior density region: 188-250 MYA]), considerably older than previous estimates. Moreover, we utilize an extensive database of host associations for mosquitoes to show that mosquitoes have shifted to feeding upon the blood of mammals numerous times, and that mosquito diversification and host-use patterns within major lineages appear to coincide in earth history both with major continental drift events and with the diversification of vertebrate classes.


Subject(s)
Culicidae , Animals , Humans , Culicidae/genetics , Phylogeny , Mosquito Vectors/genetics , Mammals , Vertebrates , Feeding Behavior
14.
J Insect Sci ; 23(5)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37804500

ABSTRACT

The aim of this study was to compare 3 DNA extraction methods: the PureLink Genomic DNA kit, DNAzol Direct reagent, and a microwave-based method, for extracting DNA from an adult Culex quinquefasciatus by focusing on the quantity and purity of DNA, cost, and time required. Ten mosquitoes were individually used for DNA extraction by each method. Based on the results obtained, DNA was extracted from each method using specific primers, resulting in a polymerase chain reaction (PCR) product with a length of 274 bp. The DNA quantity extracted using the DNAzol Direct (179.08 ±â€…3.77 ng/µl) differs significantly from that of the commercial kit (115.98 ±â€…4.57 ng/µl) and a microwave-based method (119.26 ±â€…3.06 ng/µl). The absorbance ratio of DNA extracted using the PureLink Genomic DNA kit, the DNAzol Direct, and the microwave-based methods was 1.92 ±â€…0.02, 1.79 ±â€…0.01, and 1.87 ±â€…0.01, respectively. Among the 3 methods evaluated, the microwave-based method is simpler, less expensive, and more time efficient. This is the first evaluation of the microwave-based method for extracting DNA from an adult mosquito. This study provides a useful guide for alternative DNA extraction methods for PCR-based assays, especially in low-resource settings.


Subject(s)
Culex , Culicidae , Animals , Culicidae/genetics , Culex/genetics , DNA , Polymerase Chain Reaction/methods , DNA Primers
15.
Cell Host Microbe ; 31(9): 1430-1432, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37708851

ABSTRACT

Genes and regulatory mechanisms governing malaria parasite transmission and development in mosquitoes are incompletely understood. Recently, Russell and colleagues identified genes required for parasite sexual development. In this issue of Cell Host & Microbe, Ukegbu and colleagues report a genetic approach to study genes enabling parasite survival in mosquito stages.


Subject(s)
Culicidae , Plasmodium , Animals , Culicidae/genetics , Plasmodium/genetics
18.
Funct Integr Genomics ; 23(3): 244, 2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37454326

ABSTRACT

Transposable elements exert a significant effect on the size and structure of eukaryotic genomes. Tc1/mariner superfamily elements represent the widely distributed and highly variable group of DNA transposons. Tc1/mariner elements include TLE/DD34-38E, MLE/DD34D, maT/DD37D, Visitor/DD41D, Guest/DD39D, mosquito/DD37E, and L18/DD37E families, all of which are well or less scarcely studied. However, more detailed research into the patterns of prevalence and diversity of Tc1/mariner transposons enables one to better understand the coevolution of the TEs and the eukaryotic genomes. We performed a detailed analysis of the maT/DD37D family in Cnidaria. The study of 77 genomic assemblies demonstrated that maT transposons are found in a limited number of cnidarian species belonging to classes Cubozoa (1 species), Hydrozoa (3 species) и Scyphozoa (5 species) only. The identified TEs were classified into 5 clades, with the representatives from Pelagiidae (class Scyphozoa) forming a separate clade of maT transposons, which has never been described previously. The potentially functional copies of maT transposons were identified in the hydrae. The phylogenetic analysis and the studies of distribution among the taxons and the evolutionary dynamics of the elements suggest that maT transposons of the cnidarians are the descendants of several independent invasion events occurring at different periods of time. We also established that the TEs of mosquito/DD37E family are found in Hydridae (class Hydrozoa) only. A comparison of maT and mosquito prevalence in two genomic assemblies of Hydra viridissima revealed obvious differences, thus demonstrating that each individual organism might carry a unique mobilome pattern. The results of the presented research make us better understand the diversity and evolution of Tc1/mariner transposons and their effect on the eukaryotic genomes.


Subject(s)
Cnidaria , Culicidae , Humans , Animals , Culicidae/genetics , Cnidaria/genetics , Phylogeny , DNA Transposable Elements , Evolution, Molecular
19.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(3): 251-257, 2023 Jun 06.
Article in Chinese | MEDLINE | ID: mdl-37455095

ABSTRACT

OBJECTIVE: To investigate the role of angiotensin-converting enzyme (ACE) in the reproduction of Culex pipiens pallens, so as to provide insights into selection of targets for controlling mosquito vector populations. METHODS: Cx. pipiens pallens was collected from Tangkou County, Shandong Province in 2009. Female and male mosquitoes were selected at 72 hours post-eclosion, and quantitative real-time reverse transcription PCR (qPCR) assay was used to detect the expression of ACE gene in the whole body and reproductive tissues of male mosquitoes and fertilized female mosquitoes before (0 h) and after blood meals (24, 48, 72 h), respectively. Then, 150 female and 150 male mosquitoes at 0 to 4 hours post-eclosion were selected and divided into the wild-type group (WT group), small interfering RNA-negative control group (siNC group) and small interfering RNA-ACE group (siACE group), of 50 mosquitoes in each group. Mosquitoes in the WT group were given no treatment, and mosquitoes in the siNC and siACE groups were given microinjection of siNC and siACE into the hemolymph at a dose of 0.3 µg per mosquito. The knockdown efficiency was checked using qPCR assay, and the reproductive phenotype of mosquitoes was observed. RESULTS: The relative ACE gene expression was higher in the whole body of male mosquitoes (5.467 ± 1.006) relative to females (1.199 ± 0.241) (t = 5.835, P = 0.004) at 72 h post-eclosion, and the highest ACE expression was seen in reproductive tissues of male mosquitoes (199.100 ± 24.429), which was 188.3 times higher than in remaining tissues (1.057 ± 0.340) (t = 6.602, P = 0.002). Blood meal induced high ACE expression in all body tissues of fertilized female mosquitoes, with peak expression at 24 h after blood meals (14.957 ± 2.815), which was 14.8 times higher than that before blood meals (1.009 ± 0.139) (P = 0.002). The transcriptional level of ACEs continued to increase in the ovaries of female mosquitoes after blood meals during the vitellogenesis phase, peaking at 48 h after blood meals (5.500 ± 0.734), which was 5.1 times higher than that before blood meals (1.072 ± 0.178) (P = 0.002). Small RNA interference targeting ACE resulted in a 57.2% reduction in ACE expression in female mosquitoes in the siACE group (0.430 ± 0.070) relative to the siNC group (1.002 ± 0.070) (P = 0.001), and a 41.1% reduction in male mosquitoes in the siACE group (0.588 ± 0.067) relative to the siNC group (1.008 ± 0.131) (P = 0.016). Knockdown of ACE expression resulted in a 48.0% decrease in the number of eggs laid by female mosquitoes in the siACE group [(94.000 ± 27.386) eggs] relative to the siNC group [(180.800 ± 27.386)] (P < 0.001), and a 45.0% decrease in the number of eggs laid by wild female mosquitoes mated with males in the siACE group [(104.500 ± 20.965) eggs] relative to the siNC group [(190.050 ± 10.698) eggs] (P < 0.001). CONCLUSIONS: Reduced ACE expression may inhibit the fecundity of male and female mosquitoes, and ACE may be as a potential target for mosquito vector population suppression.


Subject(s)
Culex , Culicidae , Animals , Female , Male , Angiotensins/pharmacology , Culex/genetics , Culicidae/genetics , Reproduction/genetics , RNA, Small Interfering
20.
PLoS Pathog ; 19(6): e1011468, 2023 06.
Article in English | MEDLINE | ID: mdl-37384799

ABSTRACT

Controlled human malaria infections (CHMI) are a valuable tool to study parasite gene expression in vivo under defined conditions. In previous studies, virulence gene expression was analyzed in samples from volunteers infected with the Plasmodium falciparum (Pf) NF54 isolate, which is of African origin. Here, we provide an in-depth investigation of parasite virulence gene expression in malaria-naïve European volunteers undergoing CHMI with the genetically distinct Pf 7G8 clone, originating in Brazil. Differential expression of var genes, encoding major virulence factors of Pf, PfEMP1s, was assessed in ex vivo parasite samples as well as in parasites from the in vitro cell bank culture that was used to generate the sporozoites (SPZ) for CHMI (Sanaria PfSPZ Challenge (7G8)). We report broad activation of mainly B-type subtelomeric located var genes at the onset of a 7G8 blood stage infection in naïve volunteers, mirroring the NF54 expression study and suggesting that the expression of virulence-associated genes is generally reset during transmission from the mosquito to the human host. However, in 7G8 parasites, we additionally detected a continuously expressed single C-type variant, Pf7G8_040025600, that was most highly expressed in both pre-mosquito cell bank and volunteer samples, suggesting that 7G8, unlike NF54, maintains expression of some previously expressed var variants during transmission. This suggests that in a new host, the parasite may preferentially express the variants that previously allowed successful infection and transmission. Trial registration: ClinicalTrials.gov - NCT02704533; 2018-004523-36.


Subject(s)
Culicidae , Malaria, Falciparum , Malaria , Parasites , Animals , Humans , Culicidae/genetics , Gene Expression , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Parasites/genetics , Plasmodium falciparum/genetics , Sporozoites , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...